
1
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Softw are Engineering Institute

Carnegie Mellon University

Pittsburgh, PA  15213

[Distribution Statement A] Approved for public release and unlimited distribution.

What is Really Different in 
Engineering AI-Enabled Systems?

Ipek Ozkaya

Technical Director, Engineering Intelligent Software Systems

Carnegie Mellon University Software Engineering Institute

ozkaya@sei.cmu.edu



2
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. 
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, 
a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be 
construed as an official Government position, policy, or decision, unless designated by other 
documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING 
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY 
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER 
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR 
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. 
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH 
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited 
distribution.  Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or 
electronic form without requesting formal permission. Permission is required for any other use.  Requests 
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM22-0491



3
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

An AI-enabled system is a software system with one or 

more AI component(s) that need to be developed, deployed, 

and sustained along with the other software and hardware 

elements of the system. 

• Disciplined software engineering and cybersecurity 

practices are essential starting points in adopting AI.

• The interaction between software, data, and AI 

components (e.g., ML models) creates unique challenges 

and requires software design and architecture approaches 

to be incorporated early and continuously.

AI-enabled systems are software systems!

A. Horneman, A. Mellinger, I. Ozkaya. 

AI Engineering: 11 Foundational Practices. 

Pittsburgh: Carnegie Mellon University Software 

Engineering Institute, 2019.

https://resources.sei.cmu.edu/asset _files/WhitePaper/2019_019_001 _634648.pdf


4
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

How to model and analyze  high-priority 
quality attributes of AI-enabled systems

Challenges of Predictable Design and Analysis of 
AI-Enabled Systems

What are ML components’ 
dependencies? 

How can different aspects of 
monitorability inform ML-enabled 

system evolution?

How can we model for changing anything 
changes everything principle?

How can co-architecting and co-
versioning needs be managed between 

the data pipelines and the system?

What changes are induced with 
maintenance and evolution of ML models? 



5
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Challenge #1: 
Lack of Understanding of ML Model Life Cycle

Much attention is paid to model 

development and evaluation, but 

not enough to putting models 

into production, and maintaining 

and evolving AI systems. 



6
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Recommendation:
Realize that Maintenance and Evolution is 
part of ML Model Life Cycle

Source: Adapted from S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi, and T. Zimmermann.  Software Engineering 

for Machine Learning:  A  Case  Study.   In2 019  IEEE/ACM  41st  ICSE-SEIP.  IEEE, 2019

Captures logs, 
metrics, user 

feedback, ground 
truth, …

Analyzes monitoring information 
to determine if the model needs 
to adapt to data drift or problem 

drift



7
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Challenge #2: Lack of Systems Perspective

We fail to elicit, design for, and sustain the vast amount of other software components that 

AI components need to interact with

“Only a small fraction of 

real-world ML systems is 

composed of the ML code, 

as shown by the small 

black box in the middle. 

The required surrounding 

infrastructure is vast and 

complex.” [Sculley 2015]

Source: Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden Technical Debt in Machine 
Learning Systems. In Advances in neural information processing systems (pp. 2503-2511). 

http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf


8
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Recommendation: Manage AI Component, Data, and 
Architectural Dependencies

Grace A. Lewis, Stephany Bellomo, Ipek Ozkaya:
Characterizing and Detecting Mismatch in Machine-Learning-Enabled Systems. WAIN@ICSE 2021: 133-140

Plan and design for 
three different types 
of components in ML 

systems

Largest  difference is 
the necessary 

reliance on 
monitoring to 

account for data-
dependent behavior 
of ML components. 



9
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Challenge #3: Inability to separate data and system 
attributes 

Key AI-specific concerns, when not approached 

with a systems perspective, create unanticipated 

system-level failures, e.g. 

• data-dependent behavior

• shared resource dependencies

• misaligned runtime environments for AI 

components

Key data concerns create unanticipated AI failures

• ethics, bias, fairness

• incorrect outcomes
L. Pons, I. Ozkaya. Priority Quality Attributes for Engineering AI-enabled Systems. Association for the 

Advancement of Artificial Intelligence AI in Public Sector Workshop. Washington, DC, November 7-9, 2019.

https://arxiv.org/abs/1911.02912


10
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Recommendation: Understand High-Priority Quality Attributes 
of ML-Enabled Systems

ML-related software design 

challenge

You will 

desire…
At a minimum, you need to …

ML components need to be 

designed such that attributes can 

be observed

monitorability • include monitoring components to observe and manage data changes 

over time

• identify attributes to expose

AI introduces new attack 

surfaces.

security • decouple model changes from the rest of the system

• build in capabilities to modify the systems to ease deploying retrained 

models

Tight coupling of data and 

models may limit implementing 

privacy protections.

privacy • decouple data stores and their interactions with other systems as much 

as possible

• isolate changes and updates to as few locations as possible

Software update cycles may not 

adequately address data 

changes and their impact.

data centricity • ensure that uncertainty, availability, and scalability of data are key 

architecture drivers for system design

Output of AI components is not 

human interpretable.

explainability • decouple model changes from changes to the rest of the system 

• introduce observability mechanisms into the system

Rate of change that impacts 

software and AI components can 

vary significantly.

sustainability • express rate of change as an architectural concern

• build in monitoring components for both the system and the AI 

components



11
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Challenge #4: Lack of Monitorability

AI components degrade at a different rate than 

the rest of the system components.

• Components that are responsible for 

detecting, e.g. ML model performance 

degradation, need to be clearly identified and 

designed

• Components that incorporate user feedback 

for ground truth need to be included

• Other system monitoring components may 

need to be adjusted 



12
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Recommendation #1: Decouple Different Aspects of 
Monitorability

Understand what different monitoring techniques will be needed for data quality vs. model 

quality vs. software quality vs. service quality

Explore the relationship of monitorability and self-adaptation in ML systems*

• of ML — ML models self-adapt to system changes (one of the goals of MLOps)

• for ML — ML system adapts to changes that affect quality of service (QoS)

• by ML — system uses ML techniques to adapt (some of this research is already 

happening in the self-adaptive systems community)

* H. Muccini and K. Vaidhyanathan. Software Architecture for ML-based Systems:  What  Exists  and  What  Lies  Ahead.  In 1st  Int.  
Workshop  on Software Engineering - AI Engineering (WAIN). IEEE, 2021. 



13
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Recommendation #2: Integrate the analyses performed 
by the Data Scientist into the MLOps pipeline

MLOpsautomates model deployment, but creates a model retraining problem

• Assumes new training data should be treated the same as the initial training data

• Assumes model parameters are constant and should be the same as those identified on the initial 

training data

• Has no information to understand why the model performed as it did

• Has no informed procedure of how to combine the production and development data set into a new 
training data set

Model Operational Analysis

Diagram Adapted from MS Azure MLOps Pipeline

https://insights.sei.cmu.edu/blog/improving-automated-retraining-of-machine-learning-models/



14
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Challenge #5: Different Paces of Change

AI systems have several kinds and rates of 

change that we do not yet fully understand 

and have techniques for to manage. 



15
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Recommendation: Embrace Changing Anything Changes 
Everything Principle*

Architect data pipelines to support incorporating 

rate of change in data, retraining models, and 

incorporating new data from training to deployment 

to maintenance and evolution.

Decouple routine change from highly-coupled data 

changes, which are often the source for 

unpredictable change propagation.  

Design instrumentations to enable traceability of 

recommendations to improve explainability.

Do not forget changing environment conditions.

Ipek Ozkaya. What Is Really Different in Engineering AI-Enabled Systems? IEEE Softw. 37(4): 3-6 (2020).

* Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden Technical Debt in Machine 

Learning Systems. In Proc. 28th Int. Conf. Advances in Neural Information Processing Systems, Vol. 2 (pp. 2503-2511). ACM, 2015.

https://dblp.org/db/journals/software/software37.html#Ozkaya20c


16
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Challenge #6: Failure to Recognize Two Related 
Systems in Play

An ML system may have two software 

systems that need to be developed and 
sustained in sync.

• The pipeline that produces the ML model 

(or other AI components if applicable)

• The system that uses and interacts with 

the AI/ML component



17
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Recommendation: Recognize the Need for Co-
Architecting and Co-Versioning

Co-Architecting: Both pipeline and system 

architectures need to be developed and sustained in 

sync such that design decisions are driven by both 

system and model requirements

Co-Versioning: Versioning in ML systems needs to 

provide traceability from training dataset to parameters 

to model to evaluation dataset to results to deployed 

model

• Key practice for maintenance and evolution

Grace A. Lewis, Ipek Ozkaya, Xiwei Xu:

Software Architecture Challenges for ML Systems. ICSME 2021: 634-638

https://dblp.org/pid/86/5769.html
https://dblp.org/pid/47/3196.html
https://dblp.org/db/conf/icsm/icsme2021.html#LewisOX21


18
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Summary Recommendations

Realize that maintenance and evolution 
is  part of ML Model Life Cycle

Manage ML components’ architectural 
dependencies

Understand high-priority quality 
attributes of AI-enabled systems

Decouple different aspects of 
monitorability

Embrace changing anything changes 
everything principle

Recognize the need for co-architecting 
and co-versioning



19
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Contact Information

Ipek Ozkaya

Technical Director

Engineering Intelligent Software Systems

Software Engineering Institute

Carnegie Mellon University

ozkaya@sei.cmu.edu

mailto:ozkaya@sei.cmu.edu

